Arctic - Snowflake开源的企业级AI大模型
2025-04-10 12:02:26
 4人浏览

Arctic是什么

Arctic是由云计算巨头Snowflake的AI研究团队开发的一款高效、开源的企业级大型语言模型,该大模型是一个拥有480亿(480B)的参数规模,由128个细粒度的专家构成的混合专家模型(MoE)模型。在成本效益、训练效率和推理效率方面具有显著优势,特别适合执行企业任务,如SQL生成、编程和指令遵循。Arctic采用Apache 2.0许可,提供对模型权重和代码的开放访问,并开源了数据集和研究洞察。

Snowflake Arctic

Arctic的主要特点

  • 参数规模:Arctic拥有480亿参数,但在推理时仅激活170亿参数,以提高效率。
  • 技术架构:采用混合架构,结合了密集变换器(Dense Transformer)和128个专家的MoE模型,每个专家有3.66亿参数。
  • 上下文窗口:模型训练时使用4K的注意力上下文窗口,并计划扩展至32K,以支持更长序列的处理。
  • 训练成本:Arctic的训练计算预算大约在200万美元以下(即少于3000个GPU周)即可达到顶级大模型的能力
  • 模型许可:Arctic在开放的Apache 2.0许可下发布,允许自由使用和修改。
  • 主要用途:专为企业设计,擅长执行SQL生成、编程和指令遵循等任务,适合创建定制企业模型。
Arctic的训练效率

Arctic的模型架构

  • 架构组成:Arctic采用了Dense-MoE Hybrid Transformer架构,这种架构结合了密集变换器(Dense Transformer)和混合专家模型(MoE)的特点。
  • 密集变换器规模:模型包含一个具有10B(10 billion,即10亿)参数的密集变换器模型。
  • MoE架构规模:在MoE部分,Arctic设计了128个细粒度的专家,每个专家拥有3.66B(3.66 billion,即36.6亿)参数。因此,MoE部分的总参数量为128×3.66B,即约470B(470 billion,即4700亿)参数。
  • 总参数量:结合密集变换器和MoE部分,Arctic的总参数量达到了480B(480 billion,即4.8万亿)参数。
  • 活跃参数选择:在推理过程中,Arctic使用top-2门控机制从128个专家中选择两个最合适的专家,这意味着在任何给定时间,大约有17B(17 billion,即170亿)的参数是活跃的。
  • 通信与计算重叠:为了提高训练效率,Arctic的架构设计允许在训练过程中将专家间的通信开销与计算任务重叠,从而隐藏了通信开销。
  • 推理效率:在小批量(如批量大小为1)的交互式推理中,Arctic模型的内存读取次数比Code-Llama 70B少4倍,比Mixtral 8x22B少2.5倍,这有助于提高推理性能。
  • 系统优化:Arctic与NVIDIA合作,利用TensorRT-LLM和vLLM团队的技术,为Arctic提供了初步的推理实现,并通过FP8量化技术,使得Arctic可以在单个GPU节点上运行。
  • 注意力上下文窗口:Arctic训练时使用的注意力上下文窗口为4K,团队正在开发基于attention-sinks的滑动窗口实现,以支持无限序列生成能力,未来计划扩展到32K注意力窗口。

Arctic的性能表现

Snowflake将Arctic与DBRX、Llama、Mixtral等模型在企业指标和学术指标方面的基准测试进行了对比,Arctic在企业智能指标上表现更好,在如MMLU等通用知识基准上的性能可能略低于一些最新模型,但它在这些基准上仍然保持了竞争力。

Snowflake基准测试得分

企业指标:与所有其他开源模型相比,Arctic 都表现出顶级性能,这些任务包括:

  • 编码(Coding):通过HumanEval+ 和 MBPP+ 基准测试编码能力。
  • SQL生成(SQL Generation):使用Spider基准测试SQL查询生成能力。
  • 指令遵循(Instruction Following):IFEval基准测试遵循复杂指令的能力。

如何使用Arctic

Snowflake Arctic 现已可从 Hugging Face、Replicate 等平台使用,后续将在包括 Snowflake Cortex、Amazon Web Services (AWS)、Microsoft Azure、NVIDIA API Catalog、Lamini、Perplexity 和 Together 等在内的平台陆续上线。

免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,可联系本站进行审核删除。